An Utrastable Mg/Zr Modified P2‐Type Na2/3Ni1/3Mn2/3O2 Cathode Material for High‐Power Sodium‐Ion Batteries

Author:

Yuan Siqi1,Ding Shengqi1,Ma Jun2,Zheng Qinfeng2,Bao Xu1,Liu Qian1,Cui Guijia1,Zhang Yixiao2,Yu Lei3,Wang Jia‐Wei4,Qu Changming1,Liao Xiao‐Zhen1ORCID

Affiliation:

1. Shanghai Electrochemical Energy Devices Research Center Department of Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Electrochemical Energy Device Research Center (SEED) and In‐situ Center for Physical Sciences Shanghai Jiao Tong University Shanghai 200240 P. R. China

3. Center for Advanced Studies in Precision Instruments Hainan University Haikou Hainan 570228 P. R. China

4. College of New Energy and Materials Ningde Normal University Ningde Fujian 352100 P. R. China

Abstract

AbstractP2‐Na2/3Ni1/3Mn2/3O2 demonstrates high energy density owing to its high specific capacity and high discharge voltage, but suffering from rapid performance decay due to severe structural degradation and aggravated surface side reaction during high‐voltage cycling. Herein, a Mg/Zr modified Na0.67Ni0.25Mg0.08Mn0.64Zr0.03O2 cathode is proposed with good structural stability and excellent cycling performance, showing reversible capacity of 123.2 mAh g−1 (0.1 C) and capacity retention of 99.1% after 100 cycles. The cycling stability is outstanding among P2‐type cathodes reported so far. In situ XRD analyses reveal a suppressed P2‐O2 phase transition after Mg modification, further incorporation of Zr greatly stabilizes the layered structure as some Zr ions reside in the Na layer providing a pinning effect to reduce the slide of TMO2 layer. First‐principles calculations suggest that oxygen loss in Na0.67Ni0.25Mg0.08Mn0.64Zr0.03O2 cathode is suppressed as Zr incorporation prevents the formation of oxygen vacancies. XPS analyses verify a Zr─O protective layer self‐segregated on particle surface during material synthesis. The expanded Na+ transport channel confirmed by the XRD analysis well explains the favored Na‐ion mobility verified by a high reversible capacity of 105.5 mAh/g at 20 C. This work sheds new light on providing a practical P2‐structured cathode material for high‐power sodium ion batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3