Ultra‐Fast Pulsed Discharge Preparation of Coordinatively Unsaturated Asymmetric Copper Single‐Atom Catalysts for CO2 Reduction

Author:

Liu Kaiyuan1ORCID,Sun Zhiyi2,Chen Wenxing2,Lang Xiufeng3,Gao Xin1ORCID,Chen Pengwan14

Affiliation:

1. School of Mechatronical Engineering Beijing Institute of Technology Beijing 100081 China

2. Energy & Catalysis Center School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

3. Department of Physics Hebei Normal University of Science & Technology Qinhuangdao 066004 China

4. School of Materials and Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractSingle‐atom catalysts possess great potential for applications in electrochemical carbon dioxide reduction reactions. Recently, the fast and low‐cost preparation of highly efficient single‐atom catalysts remains a challenge. Herein, a high‐density current generated by pulsed discharge is employed for the formation of graphene aerogel anchored Cu single atom catalysts perfectly. The Cu atoms decomposed by Cu(NO3)2•xH2O are fixed on graphene under the local transient high temperature and intense electromagnetic field. The activity and selectivity of formic acid are correlated with the coordinatively unsaturated Cu─N1O1 moieties, reaching an optimal Faradaic efficiency (93.7%) at −0.9 V versus a reversible hydrogen electrode (RHE). In situ characterizations reveal that the asymmetric Cu─N/O structure in a pinched state displays better catalytic activity in CO2RR. Density functional theory results indicate that the Cu─N1O1 sites regulate the adsorption configuration of intermediates and lower the energy barrier for the hydrogenation of *OCHO species, thereby promoting CO2‐to‐HCOOH conversion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3