Demonstration of Low Work Function Perovskite SrVO3 Using Thermionic Electron Emission

Author:

Lin Lin12ORCID,Jacobs Ryan1ORCID,Chen Dongzheng12ORCID,Vlahos Vasilios3,Lu‐Steffes Otto4,Alonso Jose A.5,Morgan Dane1ORCID,Booske John2ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Wisconsin‐Madison Madison WI 53706 USA

2. Department of Electrical and Computer Engineering University of Wisconsin‐Madison Madison WI 53706 USA

3. Viasat Space Systems Tempe AZ 85284 USA

4. Electron Devices Division L3 Technologies Torrance CA 90505 USA

5. Instituto de Ciencia de Materiales de Madrid CSIC Cantoblanco Madrid 28049 Spain

Abstract

AbstractEngineering a material's work function is of central importance for many technologies and in particular electron emitters used in high‐power vacuum electronics and thermionic energy converters. A low work function surface is typically achieved through unstable surface functional species, especially in high power thermionic electron emitter applications. Discovering and engineering new materials with intrinsic, stable low work functions obtainable without volatile surface species would mark a definitive advancement in the design of electron emitters. This work reports evidence for the existence of a low work function surface on a bulk, monolithic, electrically conductive perovskite oxide: SrVO3. After considering the patch field effect on the heterogeneous emitting surface of the bulk polycrystalline samples, this study suggests the presence of low work function (≈2 eV) emissive grains on SrVO3 surface. Emission current densities of 10–100 mA cm–2 at ≈1000 °C, comparable to commercial LaB6 thermionic cathodes, indicative of an overall effective thermionic work function of 2.3–2.7 eV are obtained. This study demonstrates that perovskites like SrVO3 may have intrinsically low work functions comparable to commercialized W‐based dispenser cathodes and suggests that, with further engineering, perovskites may represent a new class of low work function electron emitters.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3