Double Bionic Deformable DNA Hydrogel Microneedles Loaded with Extracellular Vesicles to Guide Tissue Regeneration of Diabetes Ulcer Wound

Author:

Zhou Liping12,Zeng Zehua1,Liu Jingchong1,Zhang Fengshi2,Bian Xiaochun1,Luo Zhiwei1,Du Hongwu1,Zhang Peixun2,Wen Yongqiang1ORCID

Affiliation:

1. Beijing Key Laboratory for Bioengineering and Sensing Technology Daxing Research Institute School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China

2. Department of Orthopaedics and Trauma Peking University People's Hospital Peking University Beijing 100044 China

Abstract

AbstractDue to the high blood glucose and low oxygen environment in diabetes wounds, complex pathological problems arise, such as failure to upregulate healing factors, biological barriers generation, microvascular lesions, and skin neuropathy. Inspired by nature and traditional Chinese paper‐cutting technology, polypeptide deoxyribonucleic acid (DNA) hydrogel microneedles (MNs) (P‐DNA gel MNs) are prepared. The obtained P‐DNA gel MNs possess optimized structure and large deformability, providing excellent clamping, stability, skin penetration, large deformation, tissue adhesion, and antibacterial properties. By incorporating extracellular vesicles (EVs) extracted under hypoxia (H‐EVs‐hypoxia), P‐DNA gel MNs can regulate tissue microenvironment, scavenge free radicals, and reduce inflammation. Notably, P‐DNA gel MNs integration system activates immune regulation and beneficial pathways, promoting neurogenesis and angiogenesis, reducing pathological pain, and achieving high‐quality healing. Overall, P‐DNA gel MNs system presents a fundamental mechanism for clinical transformation in treating diabetes wounds.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

University of Science and Technology Beijing

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3