Peroxidase‐Mimicking Iron‐Based Single‐Atom Upconversion Photocatalyst for Enhancing Chemodynamic Therapy

Author:

Le Xuan Thien1,Nguyen Nguyen Thi1,Lee Woo Tak1,Yang Yunkyu1,Choi Han‐Gon2,Youn Yu Seok13ORCID

Affiliation:

1. School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea

2. College of Pharmacy Hanyang University Ansan 15588 Republic of Korea

3. Biomedical Institute for Convergence at SKKU Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractChemodynamic therapy (CDT) has emerged as a novel approach to overcome cancer resistance and enhance anticancer efficacy. Despite the considerable effort devoted to current chemodynamic therapeutic agents, developing efficient delivery systems to induce ferroptosis remains demanding due to their limited efficacy and lack of selectivity. Herein, an iron‐based single‐atom upconversion photocatalyst (UmFe‐OA@hPM) mimicking natural horseradish peroxidases has been developed. This nanoformulation not only targets tumors via the existence of a hybrid platelet membrane (hPM) coating but also generates excessive hydroxyl radicals in response to both tumor microenvironment and external laser irradiation. This nanoenzyme overcomes the low tissue penetration of UV light, which sensitizes the iron‐doped graphitic carbon nitride network, attributed to the unique anti‐Stokes shift from infrared to UV displayed by upconversion nanoparticles. Together with an increase in intracellular polyunsaturated fatty acid accumulation induced by oleanolic acid (OA), lipid peroxidation is significantly elevated, leading to the enhancement of CDT. UmFe‐OA@hPM is demonstrated to induce significant ferroptosis in vitro, superior antitumor efficacy in breast cancer mouse models, and suppression of metastasis status when incorporated with an immune checkpoint blockade. These findings provide a potential strategy for developing a precisely controlled CDT to deal with aggressive cancers, especially in combination with immunotherapy.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3