Electrical Property Enhancement in Orientation‐Modulated Perovskite La‐Doped SrTiO3 Thermoelectric Thin Films

Author:

Zheng Yunpeng1,Chen Hetian1,Zhou Zhifang1,Yang Yueyang1,Zou Mingchu1,Zhang Wenyu1,Wei Bin12,Cai Jinghan1,Lan Jin‐Le3,Yi Di1,Nan Ce‐Wen1,Lin Yuan‐Hua1ORCID

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

2. Henan Key Laboratory of Materials on Deep‐Earth Engineering School of Materials Science and Engineering Henan Polytechnic University Jiaozuo 454000 P. R. China

3. State Key Laboratory of Organic‐Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractThermoelectric oxide thin films are promising in chip cooling. The issues on the orientation of thin films are essential as they are related to the structures, morphologies, and thermoelectric properties. In this regard, the orientation modulation is conducted on La‐doped SrTiO3 thin films on (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) single crystal substrates. Layer‐by‐layer growth mode is found in (001)‐ and (110)‐ oriented thin films, resulting in few grain boundaries (GBs). In (111)‐oriented films, island growth mode leads to columnar grain boundaries that build up potential barriers for electrons to be strongly scattered and filtered, suppressing electron mobility and increasing effective mass. In addition, the GBs serve as oxygen vacancy diffusion paths when annealing, causing increased carrier concentration and lattice contraction. The weighted mobility of 71.9 cm2 V−1 s−1 and electrical conductivity of ≈600 S cm−1 are realized in the (001)‐oriented film at room temperature. Ultimately, outstanding power factor values of ≈569 µW m−1 K−2 (room temperature) and ≈791 µW m−1 K−2 (573 K) are successfully achieved, outperforming those in polycrystalline ceramics and (111)‐oriented films. This study systematically investigates the influence of grain boundaries and orientations on SrTiO3‐based thermoelectric films, which lays a solid foundation for improving thermoelectric performance in other oxide thin films.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3