Contrasting Miscibility of Ionic Liquid Membranes for Nearly Perfect Proton Selectivity in Aqueous Redox Flow Batteries

Author:

Lee Jungho1,Kim Seulwoo1,Park Kyobin1,Koo Hansol1,Park Chanui1,Park Yuwon1,Lee Won Bo1,Lee Young Joo23,Lee Kyu Tae1ORCID

Affiliation:

1. School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

2. Western Seoul Center Korea Basic Science Institute 150, Bugahyun‐ro, Seodaemun‐gu Seoul 03759 Republic of Korea

3. Department of Chemistry Chung‐Ang University 84, Heukseok‐Ro, Dongjak‐gu Seoul 06974 Republic of Korea

Abstract

AbstractIon‐selective membranes are widely used in various energy storage applications. However, conventional polymer‐based ion‐selective membranes, such as Nafion, are not perfectly ion‐selective, leading to a significant permeation of undesirable ionic species. As the imperfect ion‐selectivity of membranes leads to the failure of energy storage devices, much effort is devoted to improving membrane ion‐selectivity. Herein, an immiscible liquid‐state membrane is introduced for aqueous redox flow batteries. As hydrophobic ionic liquids are immiscible with aqueous catholyte and anolyte solutions, they separate the two without crossover. This property renders them suitable for use as a membrane for aqueous redox flow batteries. In addition, ionic liquids with long side alkyl chains, such as 1‐hexyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM‐TFSI), are miscible with sulfuric acid, whereas transition metal sulfates remain insoluble in HMIM‐TFSI. For this reason, HMIM‐TFSI is selectively permeable to protons and remains impermeable to transition metal cations. As a result, the HMIM‐TFSI membrane is almost perfectly proton‐selective, leading to negligible permeability of unfavorable ionic species, such as transition metal cations. Eventually, the HMIM‐TFSI membrane shows the excellent electrochemical performance of vanadium redox flow batteries, such as negligible self‐discharge over 2800 h, high Coulombic efficiency (≈99%), and stable capacity retention over 100 cycles.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3