3D‐Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering

Author:

Koeck Kim Sarah1,Trossmann Vanessa Tanja1,Scheibel Thomas123ORCID

Affiliation:

1. Department of Biomaterials University of Bayreuth Prof.‐Rüdiger‐Bormann Str. 1 95447 Bayreuth Germany

2. Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB) Bayreuther Materialzentrum (BayMAT) Bayerisches Polymerinstitut (BPI) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany

3. Faculty of Medicine University of Würzburg Pleicherwall 2 97070 Würzburg Germany

Abstract

AbstractCollagen is one main component of the extracellular matrix (ECM) in natural tissues and is, therefore, well suited as a biomaterial for tissue engineering. In this study, a method is presented to 3D‐bioprint collagen into a precipitation bath comprising recombinantly produced spider silk protein eADF4(C16) yielding a composite with excellent mechanical properties. The spider silk precipitation bath induced assembly of the collagen into fibrils, and subsequent addition of potassium phosphate buffer lead to the formation of silk particles and stabilization of the collagen fibrils. The produced collagen‐silk composite scaffolds show an internal structure of homogeneously distributed and interacting collagen fibrils and spider silk particles with significantly better mechanical properties compared to plain collagen scaffolds. Further, enzymatic degradation assays of the scaffolds over a 7‐day period show higher stability of the collagen‐silk scaffolds compared to plain collagen scaffolds in the presence of wound proteases. Using the spider silk variant eADF4(C16‐RGD) further increases compressive stress and elastic modulus compared to that of the unmodified variant. Finally, it is shown that the unique collagen‐spider silk composite scaffolds comprising the cell‐binding domains of collagen and the RGD sequence in the spider silk variant represent a promising material for soft tissue regeneration.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3