Affiliation:
1. Department of Materials Science and Engineering McMaster University Hamilton ON L8S 4M1 Canada
2. Department of Process Engineering and Applied Science Dalhousie University Halifax NS B3H 4R2 Canada
3. Department of Physics and Atmospheric Science Dalhousie University Halifax NS B3H 4R2 Canada
4. Department of Mechanical Engineering Dalhousie University Halifax NS B3H 4R2 Canada
5. Canadian Light Source 44 Innovation Boulevard Saskatoon SK S7N 2V3 Canada
Abstract
AbstractNickel‐rich cathode materials with small amounts of tungsten (W) dopants have attracted extensive attention in recent years. However, the chemical state, crystalline form, compound chemistry, and location of W in these layered cathodes are still not well‐understood. In this study, these missing structural properties are determined through a combination of macro‐, to atomic‐sensitive characterization techniques and density functional theory (DFT). W‐doped LiNiO2 (LNO) particles, prepared with mechanofusion and coprecipitation methods, are used to probe changes in the structure and location of W‐species. The results indicate that W is mainly distributed on the surfaces and inside grain boundaries of the secondary particles, regardless of the doping method. Electron energy loss spectroscopy (EELS) mapping confirms the simultaneous presence of W, O, with and without Ni in the grain boundaries as well as W‐ and O‐rich regions on the very surface. The W‐rich areas inside the grain boundaries are found to be in two forms, crystalline and amorphous. This paper suggests the presence of kinetically stabilized‐Li4+xNi1‐xWO6 (x = 0, 0.1) with the possibility of LixWyOz phases in LNO which are consistent with the electron microscopy, X‐ray absorption and diffraction data. The multiple roles of W in this complex microstructure are discussed considering the W distribution.
Funder
Canada Foundation for Innovation
McMaster University
Canadian Institutes of Health Research
University of Saskatchewan
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献