Amelioration of Osteoarthritis via Tetrahedral Framework Nucleic Acids Delivering Microrna‐124 for Cartilage Regeneration

Author:

Shi Sirong1,Chen Tianyu1,Lu Weitong1,Chen Yang23,Xiao Dexuan1,Lin Yunfeng1ORCID

Affiliation:

1. State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China

2. Department of pediatric surgery West China Hospital of Sichuan University Chengdu Sichuan 610041 P. R. China

3. Department of Liver Surgery & Liver Transplantation Center West China Hospital of Sichuan University Chengdu Sichuan 610041 P. R. China

Abstract

AbstractMicroRNAs (miRNAs) regulate several physiological and pathological processes involved in various diseases, including osteoarthritis (OA). OA is the most common global musculoskeletal disorder, characterized by the irreversible progressive destruction of articular cartilage. Supplementation with exogenous miRNAs may represent a promising therapeutic OA treatment, with miRNA‐124 (miR‐124) being a prime candidate for its anti‐inflammatory ability; however, an effective drug delivery system is urgently required to enhance miR‐124 stability and capacity to enter chondrocytes. To this end, tetrahedral framework nucleic acids’ (tFNAs) self‐assembled 3D DNA nanostructures possess superior inherent biocompatibility, versatile functionality, unsurpassed editability, and strong cellular internalization ability. In this study, tFNAs carrying one or three miR‐124 (T‐miR1 or T‐miR3) are successfully synthesized. T‐miR3 is largely absorbed via induced inflammatory chondrocytes by IL‐1β. With reactive oxygen species’ scavenging ability and inflammation‐suppressive miR‐124 release behavior, T‐miR3 efficiently protects chondrocytes against IL‐1β injury in vitro. Additionally, T‐miR3 effectively prevents OA progression by inhibiting chondrocyte apoptosis, smoothing cartilage surfaces, suppressing extracellular matrix degradation, and increasing synovial thickness, effectively protecting in vivo articular cartilage, and illustrating the therapeutic ability of T‐miR3 in OA treatment. This study provides experimental evidence and novel therapeutic strategies for OA treatment in the clinical setting.

Funder

Sichuan University

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3