Sensing Mucus Physiological Property In Situ by Wireless Millimeter‐Scale Soft Robots

Author:

Xiao Boyang12ORCID,Xu Yilan12,Edwards Steven3,Balakumar Lohit1,Dong Xiaoguang123ORCID

Affiliation:

1. Department of Mechanical Engineering Vanderbilt University Nashville TN 37240 USA

2. Vanderbilt Institute for Surgery and Engineering Vanderbilt University Nashville TN 37240 USA

3. Department of Biomedical Engineering Vanderbilt University Nashville TN 37240 USA

Abstract

AbstractThe physiological property of mucus is an important biomarker for monitoring the human health conditions and helping understand disease development, as mucus property such as viscosity is highly correlated with inflammation and other diseases. However, it remains challenging to sense mucus viscosity using pure medical imaging. Collecting and analyzing mucus sample in vitro using flexible endoscopes and capsule endoscope robots is also challenging due to their difficulty of accessing very confined, tortuous, and small spaces, and the sample may not reflect the real mucus property. Here a novel method is proposed to enable sensing mucus viscosity in situ by wireless miniature sensors actuated by magnetic fields and tracked by medical imaging. These miniature viscosity sensors can be delivered with minimal invasion using a novel sensor delivery mechanism by controlling a magnetically actuated millimeter‐scale soft climbing robot. As the soft robot can access confined and narrow spaces, and reliably deploy the sensor on soft tissue surfaces, multiple sensors can be delivered on soft biological tissues to sense biofluid viscosity spatiotemporally. The proposed minimally invasive robotic delivery and viscosity sensing method thus paves the way toward sensing biofluid properties deep inside the body for future disease monitoring and early diagnosis functions.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3