High‐Efficiency Thermoelectric Module Based on High‐Performance Bi0.42Sb1.58Te3 Materials

Author:

Wu Gang12,Zhang Qiang12,Fu Yuntian3,Tan Xiaojian12ORCID,Noudem Jacques G.4,Zhang Zongwei1,Cui Chen1,Sun Peng12,Hu Haoyang1,Wu Jiehua1,Liu Guo‐Qiang12,Jiang Jun12

Affiliation:

1. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

2. Ningbo College of Materials Technology and Engineering University of Chinese Academy of Science Beijing 100049 China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering Donghua University Shanghai 201620 China

4. Normandie University ENSICAEN UNICAEN CNRS CRISMAT 14000 Caen France

Abstract

AbstractBismuth‐telluride‐based alloy is the sole thermoelectric candidate for commercial thermoelectric application in low‐grade waste heat harvest near room temperature, but the sharp drop of thermoelectric properties at higher temperature and weak mechanical strength in zone‐melted material are the main obstacles to its wide development for power generation. Herein, an effective approach is reported to improve the thermoelectric performance of p‐type Bi0.42Sb1.58Te3 hot‐pressed sample by incorporating Ag5SbSe4. A peak ZT of 1.40 at 375 K and a high average ZT of 1.25 between 300 and 500 K are achieved. Such outstanding thermoelectric performance originates from the synergistic effects of improved density‐of‐states effective mass, reduced bipolar thermal conductivity by the boosted carrier concentration, and suppressed lattice thermal conductivity by the induced phonon scattering centers including substitute point defects, dislocations, stress–strain clusters, and grain boundaries. Comprised of the p‐type Bi0.42Sb1.58Te3 + 0.10 wt% Ag5SbSe4 and zone‐melted n‐type Bi2Te2.7Se0.3, the thermoelectric module exhibits a high conversion efficiency of 6.5% at a temperature gradient of 200 K, indicating promising applications for low‐grade heat harvest near room temperature.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3