Low‐Dose Cu Ions Assisted by Mild Thermal Stimulus Inducing Bacterial Cuproptosis‐Like Death for Antibiosis and Biointegration

Author:

Xue Yang1,Zhang Lan1ORCID,Zhou Jianhong2,Chen Jun3,Ma Yuwei2,Han Yong14

Affiliation:

1. State‐Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

2. School of Physics and Opto‐Electronic Technology Baoji University of Arts and Science Baoji 721016 China

3. Department of Osteology Xi'an People's Hospital (Xi'an No. 4 Hospital) Xi'an 710100 China

4. Department of Orthopaedics The First Affiliated Hospital of Xi’an Jiaotong University Xi’an 710061 China

Abstract

AbstractMethicillin‐resistant Staphylococcus aureus (MRSA) is threatening human health due to its resistance to multiple antibiotics. Excessive copper (Cu) ions target the lipoylated proteins of tricarboxylic acid cycle of cancer cells, inducing proteotoxic stress and their cuproptosis death. Whether cuproptosis plays a part in killing MRSA by low‐dose supplement of Cu ions remains to be explored. Herein, Cu‐doped hydroxyapatite nanorods (PC) are prepared on polyetheretherketone (PEEK) to resist infection and improve PEEK performance in tissue integration with the assistance of near‐infrared (NIR) irradiation, and the mechanism against MRSA is elucidated. Mild photothermal stimulation increases bacterial membrane permeability, accelerating Cu ions’ intake and consequently inducing cuproptosis‐like death of MRSA. It is confirmed by aggregation of dihydrolipoamide S‐acetyltrans‐ferase (DLAT), deactivation of glutathione peroxides 4 (GPX4), and destabilization of Fe─S cluster proteins ferredoxin (FDX1) and lipoyl synthase (LIAS). Fortunately, fibroblast behaviors are upregulated on NIR‐irradiated PC. In vivo, PC with NIR irradiation exhibits outstanding MRSA elimination, reduced inflammation response, and improved biointegration. Overall, it is demonstrated that bacterial cuproptosis‐like death can be induced by Cu ions at a non‐cytotoxic dose when cooperated with mild heat stimulus, and this photothermal strategy of PC has greatly promising application in improving PEEK performance in clinic.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3