Synergistic Engineering of Carbon Nanotubes Threaded NiSe2/Co3Se4 Quantum Dots with Rich Se Vacancies for High‐Rate Nickel–Zinc Batteries

Author:

Li Guochang1ORCID,Tang Yifan1,Cui Shuangxing1,Chen Hao1,Chong Hui2,Han Lei1ORCID,Pang Huan2ORCID

Affiliation:

1. School of Materials Science & Chemical Engineering Ningbo University Ningbo Zhejiang 315211 P. R. China

2. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China

Abstract

AbstractLimited by sluggish reaction kinetics, insufficient electrode utilization and severe volume deformation, designing nickel‐based materials with high capacity and rate capability is still a challenge. Herein, a carbon nanotubes threaded NiSe2/Co3Se4 quantum dots embedded in carbon nanospheres with rich Se vacancies both in NiSe2 and Co3Se4 is elaborately designed via MOF template method. The formation mechanism of the Se vacancies is elucidated for the first time, which is ascribed to the release of gas during the decomposition of organic ligand inhibits the ordered arrangement of atoms. The CNT‐V‐NiCoSe possesses many significant superiorities, such as sufficiently exposed active sites, high electrode utilization, favorable charge‐carrier migration, and relaxed structure deformation. Consequently, the CNT‐V‐NiCoSe electrode shows top‐level specific capacity (384 mAh g−1 at 1 A g−1), ultrahigh rate capability (209 mAh g−1 at 150 A g−1) and remarkable cycling durability. The CNT‐V‐NiCoSe//Zn battery achieves maximum energy density of 615.6 Wh kg−1 and maximum power density of 81.7 kW kg−1. Density functional theory calculations elucidate the Se vacancies improve the density of states at Fermi level, facilitates internal charge transfer, and enhances OH adsorption ability. This study provides guidance for the preparation of high‐performance electrode materials with rich vacancies by template method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3