Biodegradable, Sustainable Hydrogel Actuators with Shape and Stiffness Morphing Capabilities via Embedded 3D Printing

Author:

Sun Wenhuan1ORCID,Williamson Avery S.1ORCID,Sukhnandan Ravesh1ORCID,Majidi Carmel12345ORCID,Yao Lining6ORCID,Feinberg Adam W.247ORCID,Webster‐Wood Victoria A.1237ORCID

Affiliation:

1. Department of Mechanical Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

2. Department of Biomedical Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

3. Robotics Institute Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

4. Department of Materials Science and Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

5. Department of Electrical and Computer Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

6. Human‐Computer Interaction Institute, School of Computer Science Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

7. McGowan Institute for Regenerative Medicine Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

Abstract

AbstractDespite the impressive performance of recent marine robots, many of their components are non‐biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically‐sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small‐scale hydrogel‐based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small‐scale biologically‐derived, marine‐sourced hydraulic actuators by printing thin‐wall structures that are water‐tight and pressurizable. Calcium‐alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation‐crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically‐sourced materials.

Funder

Directorate for Biological Sciences

U.S. Department of Defense

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3