Biomaterials Elicit Pyroptosis Enhancing Cancer Immunotherapy

Author:

Zhang Meng‐Jie1,Wang Yuan‐Yuan1,Han Lin‐Lin2,Liu Xin‐Yang1,Xie Yun‐Yun1,Xu Zhigang2,Sun Zhi‐Jun1

Affiliation:

1. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration Key Laboratory of Oral Biomedicine Ministry of Education Hubei Key Laboratory of Stomatology School & Hospital of Stomatology Frontier Science Center for Immunology and Metabolism Wuhan University Wuhan 430079 P. R. China

2. Key Laboratory of Luminescence Analysis and Molecular Sensing Ministry of Education School of Materials and Energy & Chongqing Engineering Research Center for Micro‐Nano Biomedical Materials and Devices Southwest University Chongqing 400715 P. R. China

Abstract

AbstractCancer immunotherapy has the potential to revolutionize the treatment of malignant tumors, but its effectiveness is limited by the low immune response rate and immune‐related adverse events. Pyroptosis, as an inflammatory programmed cell death type, triggers strong acute inflammatory response and antitumor immunity, converting “cold” tumors to “hot”. Particularly, biomaterials loading pyroptosis inducers targeting the tumor microenvironment to engineer pyroptosis, have achieved great progress in recent years. Herein, the design strategy, mechanism pathway, and role of biomaterials to induce pyroptosis in cancer immunotherapy are comprehensively reviewed. The present review focuses on the application of biomaterials‐induced pyroptosis in cancer immunotherapy, including nanogel, polymer prodrug, nanovesicle, and mesoporous material. Additionally, the synthesis of a series of stimuli‐responsive nanoplatforms, including glutathione‐responsive, pH‐responsive, reactive oxygen species‐responsive, and enzyme‐mimicking catalytic performance, is described. Meanwhile, it augments multiple immune response processes of cell uptake, antigen presentation, T‐cell activation, and expansion. Finally, the perspectives of pyroptosis‐mediated inflammation to break through the tumor vascular basement membrane barrier achieving efficient volcanic penetration of biomaterials are discussed. Artificial intelligence, multi‐omics analysis, and anthropogenic animal models of organoids are presented, aiming to provide guidance and assistance for constructing effective and controllable pyroptosis‐engineered biomaterials and improving tumor immunotherapy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3