Injectable Responsive Hydrogel Delivery Platform: Enabling High Tissue Penetration and Sonogenetic‐Like Potentiating Anti‐Tumor Immunotherapy

Author:

Dai Zideng123,Li Xiaohong2,Chen Qian4,Zhu Yutong23,Shi Zhangpeng4,Deng Xi23,Wang Chen123,Chen Hangrong123ORCID

Affiliation:

1. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub‐lane Xiangshan Hangzhou 310024 China

2. State Key Laboratory of High‐Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Ding‐Xi Road Shanghai 200050 China

3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

4. Nanotechnology and Intestinal Microecology Research Center Shanghai Tenth People's Hospital School of Medicine Tongji University 301 Yanchang Road Shanghai 200072 China

Abstract

AbstractThe characteristics of malignant solid tumors with dense extracellular matrix (ECM) and immunosuppressive microenvironment (IME) seriously restrict the high efficacy and precise treatment of tumors, leading to increased susceptibility to malignant recurrence and metastasis. Herein, an ultrasound‐mediated hydrogel delivery platform HA‐F127@Ti‐MOF‐Au/PEG‐TK‐DOX/PFD (abbr. HFTiDP) based on a “sonogenetic‐like technology” is developed, which encapsulates sonosensitizer (Ti‐MOF‐Au), chemotherapeutic prodrug (PEG‐TK‐DOX), and ECM‐solubilizing drug pirfenidone (PFD), to achieve high tissue penetration and endogenous intracellular regulation of IME. More importantly, exogenous ultrasound stimulation combined with a hydrogel delivery platform can affect drug resistance‐related gene/protein expressions and influence signal transduction pathways in the immune microenvironment, leading to promoting TAAs release to activate immunity, achieving high efficacy in either pancreatic or triple‐negative breast cancer (TNBC), and remarkably inhibiting lung metastasis and splenomegaly. Overall, this work provides a novel strategy for an ultrasound‐mediated niche‐like delivery platform that offers high efficacy and biosafety in localized cancer therapy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3