Role of Meniscus Shape on Crystallization of Molecular Semiconductors and Fluid Dynamics During Meniscus‐Guided Coating

Author:

Yildiz Okan1,Wang Zuyuan2,Brzezinski Mateusz1,Wang Shuanglong1,Li Zhenpeng2,Michels Jasper J.1,Blom Paul W. M.1,Pisula Wojciech13,Marszalek Tomasz13ORCID

Affiliation:

1. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

2. School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu Sichuan 611731 China

3. Department of Molecular Physics Faculty of Chemistry Lodz University of Technology Zeromskiego 116 Lodz 90‐924 Poland

Abstract

AbstractMeniscus‐guided coating (MGC) is a promising method that offers predictable fabrication of highly crystalline thin films. For the integration of molecular semiconductors into large‐area electronic devices with high efficiency and reliability, homogeneous and highly ordered film morphologies are required. The solution processing of such defect‐free film structures requires comprehensive understanding of the complex relationship between molecular crystallization, fluid dynamics, and meniscus shape. In this work, the role of the meniscus shape on fluid dynamics in the coating bead and the crystallization process of the low molecular weight semiconductor 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) during zone‐casting is systematically investigated. Depending on meniscus shape and coating velocity, four morphological subregimes are found: stick‐slip morphology, unidirectional homogenous crystal stripes, spherulitic morphology, and directional branched morphology; of which the second exhibits the highest crystallinity with a reduced trap density in the thin film, resulting in improved saturation and effective mobilities in field‐effect transistors (FET). Numerical simulation of fluid dynamics explains the observed morphological trends, which are correlated with the electrical behavior of the devices. This work provides a fundamental basis for upscaling MGC methods for the application of functional thin films.

Funder

Narodowe Centrum Nauki

Fundacja na rzecz Nauki Polskiej

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3