Ultralong‐Term High‐Density Data Storage with Atomic Defects in SiC

Author:

Hollenbach M.1,Kasper C.2,Erb D.1,Bischoff L.1,Hlawacek G.1,Kraus H.3,Kada W.4,Ohshima T.56,Helm M.17,Facsko S.1,Dyakonov V.2,Astakhov G. V.1ORCID

Affiliation:

1. Institute of Ion Beam Physics and Materials Research Helmholtz‐Zentrum Dresden‐Rossendorf 01328 Dresden Germany

2. Experimental Physics 6 and Würzburg‐Dresden Cluster of Excellence ct.qmat Julius‐Maximilian University of Würzburg 97074 Würzburg Germany

3. Jet Propulsion Laboratory California Institute of Technology Pasadena CA 91109 USA

4. Department of Quantum Science and Energy Engineering Graduate School of Engineering Tohoku University 6‐6‐01‐2, Aza‐Aoba, Aramaki, Aoba‐ku Sendai 980‐8579 Japan

5. National Institutes for Quantum Science and Technology Takasaki Gunma 370‐1292 Japan

6. Department of Materials Science Tohoku University 6‐6‐02 Aramaki‐Aza, Aoba‐ku Sendai 980‐8579 Japan

7. Technische Universität Dresden 01062 Dresden Germany

Abstract

AbstractThere is an urgent need to increase the global data storage capacity, as current approaches lag behind the exponential growth of data generation driven by the Internet, social media, and cloud technologies. In addition to increasing storage density, new solutions should provide long‐term data archiving that goes far beyond traditional magnetic memory, optical disks, and solid‐state drives. Here, a concept of energy‐efficient, ultralong, high‐density data archiving is proposed, based on optically active atomic‐size defects in a radiation resistance material, silicon carbide (SiC). The information is written in these defects by focused ion beams and read using photoluminescence or cathodoluminescence. The temperature‐dependent deactivation of these defects suggests a retention time minimum over a few generations under ambient conditions. With near‐infrared laser excitation, grayscale encoding and multi‐layer data storage, the areal density corresponds to that of Blu‐ray discs. Furthermore, it is demonstrated that the areal density limitation of conventional optical data storage media due to the light diffraction can be overcome by focused electron‐beam excitation.

Funder

Deutsche Forschungsgemeinschaft

Ministry of Education, Culture, Sports, Science and Technology

Jet Propulsion Laboratory

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3