Lattice Distortion Engineering over Ultrathin Monoclinic BiVO4 Nanoflakes Triggering AQE up to 69.4% in Visible‐Light‐Driven Water Oxidation

Author:

Philo Davin12,Luo Shunqin2ORCID,He Can3,Wang Qi12,Ichihara Fumihiko2,Jia Lulu2,Oshikiri Mitsutake4,Pang Hong2,Wang Yan5,Li Sijie12,Yang Gaoliang26,Ren Xiaohui27,Lin Huiwen28,Ye Jinhua12ORCID

Affiliation:

1. Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Hokkaido 060‐0814 Japan

2. International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

3. Beijing Easpring Material Technology Co., Ltd. Beijing 100160 China

4. International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) 3–13 Sakura Tsukuba Ibaraki 305‐0003 Japan

5. KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology Thuwal 23955–6900 Saudi Arabia

6. Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Innovis 138634 Singapore

7. The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology School of Materials and Metallurgy Wuhan University of Science and Technology Wuhan 430081 China

8. School of Materials Science and Engineering Southeast University Nanjing 211189 China

Abstract

AbstractAn efficient water oxidation photocatalyst is imperative for the realization of artificial photosynthesis. Herein, a cooperative strategy is represented that enables 2D structure tailoring and lattice distortion engineering simultaneously over a BiVO4 photocatalyst for efficient visible‐light‐driven oxygen evolution reaction (OER). Specifically, the lattice distortion engineering is achieved through the introduction of a sodium (Na+) additive during the ion exchange process. Structural characterizations suggest the formation of ultrathin 2D monoclinic BiVO4 nanoflakes with shrank VO and elongated BiO bonds. Mechanistic investigations reveal the advantages of ultrathin 2D features for exposing more (010) active facets and shortening the required migration distance for charge carriers to reach the catalytic surface. More importantly, the lattice distortion effect is found to crucially govern the charge carrier dynamics and catalytic surface behavior of BiVO4 photocatalyst, endowing the optimized sample with an outstanding photocatalytic OER performance triggering up to 69.4% apparent quantum efficiency over Fe3+ sacrificial solution. These findings highlight the functional application of morphology and dimensional modification, as well as lattice distortion engineering in synthesizing superior monoclinic BiVO4 photocatalyst for efficient visible‐light‐driven water oxidation.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Hokkaido University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3