Rational Design of Thick Electrodes in Lithium‐Ion Batteries by Re‐Understanding the Relationship Between Thermodynamics and Kinetics

Author:

Fu Kang1,Li Xueyan1,Sun Kai1,Zhang Zhuojun1,Yang Haosong1,Gong Lili1,Qin Guangzhao2,Hu Di3,Li Tao3,Tan Peng14ORCID

Affiliation:

1. Department of Thermal Science and Energy Engineering University of Science and Technology of China (USTC) Hefei Anhui 230026 China

2. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle College of Mechanical and Vehicle Engineering Hunan University Changsha Hunan 410082 China

3. State Grid Anhui Electric Power Research Institute Shushan District No.199 Ziyun Road Hefei Anhui 230026 China

4. State Key Laboratory of Fire Science University of Science and Technology of China (USTC) Hefei Anhui 230026 China

Abstract

AbstractTremendous efforts are made to enhance the energy density of lithium‐ion batteries, among which designing thick electrodes is a promising approach. Traditionally, kinetic effects are considered in constructing thick electrodes, such as decreasing the tortuosity to facilitate ion transport. This work innovatively investigates the coupling effect of kinetics and thermodynamics on electrode processes and conducts a competitive analysis between them by visualizing electrode processes. The results indicate that a sloping equilibrium potential curve facilitates the uniform utilization of electrodes, but severe kinetic constraints render the thermodynamic regulation ineffective. Thus, modifying the thermodynamic properties of the electrode to strengthen the regulatory effect is a promising approach. Kinetic constraints are the inherent factors limiting the capacity release of batteries. An in‐depth analysis reveals that ensuring the hybrid control of ions and electrons can significantly alleviate kinetic reaction heterogeneity. As a proof‐of‐concept, thick electrodes with vertical channels are constructed, enabling thermodynamics to regain dominance in the electrode process, ultimately achieving outstanding capacity retention of 63% at 4C. This work provides a more comprehensive perspective and represents a significant breakthrough in guiding electrode design to achieve a higher energy density.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3