Engineering Carbon Nanotube‐Based Photoactive COF to Synergistically Arm a Multifunctional Antibacterial Hydrogel

Author:

Lin Xiaojun1,Zhang Meng2,Lv Wenxin1,Li Jing1,Huang Rong2,Wang Yi1ORCID

Affiliation:

1. Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry and Chemical Engineering Donghua University Shanghai 201600 China

2. School of Pharmacy Key Laboratory of Smart Drug Delivery Ministry of Education Fudan University Shanghai 201203 China

Abstract

AbstractEnhancing the covalent organic framework (COF)’s photocatalytic ability synergistically with gelling formulations remains an urgent challenge for extended bio‐applications. Herein, COF is homogeneously coated on an oxidized carbon nanotube (OCNT) and coordinated by Fe3+ to obtain tubular nanocomplex OCNT@COF‐Fe (O@CF). The results showed that the photodynamic reactive oxygen species (ROS) generation ability of O@CF is enhanced due to the wrapped OCNT and the coordinated Fe3+, which can respectively serve as intermolecular charge transfer channel and electron acceptors/substrates (O2 and H2O) adsorbent to narrow the energy band gaps, increase the light absorption, and decrease the photogenerated carrier recombination. Synergistically, O@CF exhibited pH‐dependent peroxidase and catalase activities, which further enhanced ROS generation and relieved hypoxia, respectively. Meanwhile, O@CF possessed degradation of COF coatings‐dependent photothermal performances. Then, O@CF is evenly incorporated into Schiff base hydrogel via the COF coating‐participated covalent cross‐linking, to obtain an electroconductive hydrogel OCNT@COF‐Fe@Gel (O@CF@G). This O@CF@G can not only improve the mechanical properties of pure gel but also inherit the multifunction of O@CF. Consequently, it can well adhere to diabetic wounds for imbibition, drug‐resistant biofilm elimination, gram‐positive and negative bacteria killing, hypoxia alleviation, and intercellular electrical signal conduction, thus accelerating wound healing.

Funder

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3