A Universal MOF‐Confined Strategy to Synthesize Atomically Dispersed Metal Electrocatalysts Toward Fast Redox Conversion in Lithium‐Sulfur Batteries

Author:

He Songjie1,Yang Juan1ORCID,Liu Siyu1,Wang Xiaoting1,Qiu Jieshan2

Affiliation:

1. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

2. College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractAccelerating catalytic conversion of lithium polysulfides (LiPSs) is a promising way to address the shuttle effect of lithium‐sulfur (Li‐S) batteries but remains a challenge to date. Herein, a universal metal‐organic framework (MOF)‐confined strategy is proposed to fabricate atomically dispersed metal catalysts (ADMCs) with the help of ethylenediaminetetraacetic acid (EDTA) toward fast redox conversion in Li‐S batteries. In the synthesis, the EDTA acts as not only the coupling agent for the chemical bonding with unsaturated sites of MOF but also the chelating agent for metal ion capture and further confining them into MOF. As a proof of concept, the ADMCs made of transition metal sites anchored on MOF‐808 (named MOF‐808‐M, M = Fe, Co, Ni, Cu, Zn, etc.) are obtained, with well‐defined M‐N2O2 configurations. The in‐depth experiments and theoretical calculations reveal that the atomically dispersed M‐N2O2 sites are capable of enhancing the chemical affinity of MOF‐808‐M toward LiPSs and further accelerating their redox conversion by reducing the energy barrier of the rate‐limiting step. As a result, the assembled Li‐S batteries with S@MOF‐808‐M cathode, represented by S@MOF‐808‐Zn exhibit a high reversible specific capacity of 1192 mAh g−1 at 0.1 C, excellent rate capability of 599 mAh g−1 at 2 C, and remarkable long‐term cycling stability with a capacity retention rate of 94.6% after 300 cycles at 1 C. Moreover, the high areal capacity of 4.79 mAh cm−2 at 0.2 C with a sulfur loading of 5.14 mg cm−2 for S@MOF‐808‐M cathode can be achieved. This work presents a universal strategy to fabricate ADMCs with well‐defined active centers by combining the advantages of MOF for Li‐S batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3