Single‐Atom Cadmium‐N4 Sites for Rechargeable Li–CO2 Batteries with High Capacity and Ultra‐Long Lifetime

Author:

Zhu Kaige1,Li Xin1,Choi Junyoung2,Choi Changhyeok2,Hong Song1,Tan Xinyi3,Wu Tai‐Sing4,Soo Yun‐Liang5,Hao Leiduan1,Robertson Alex W.6,Jung Yousung2,Sun Zhenyu1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

3. School of Materials Science and Engineering Beijing Institute of Technology Beijing Key Laboratory of Environmental Science and Engineering Beijing 100081 P. R. China

4. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

5. Department of Physics National Tsing Hua University Hsinchu 30013 Taiwan

6. Department of Physics University of Warwick Coventry CV4 7AL UK

Abstract

AbstractThe rechargeable Li–CO2 battery shows great potential in civil, military, and aerospace fields due to its high theoretical energy density and CO2 capture capability. To facilitate the practical application of Li–CO2 battery, the design of efficient, low‐cost, and robust non‐noble metal cathodes to boost CO2 reduction/evolution kinetics is highly desirable yet remains a challenge. Herein, single‐atom cadmium is reported with a Cd‐N4 coordination structure enable rapid kinetics of both the discharge and recharge process when employed as a cathode catalyst, and thus facilitates exceptional rate performance in a Li–CO2 battery, even up to 10 A g−1, and remains stable at a high current density (100 A g−1). An unprecedented discharge capacity of 160045 mAh g−1 is attained at 500 mA g−1. Excellent cycling stability is maintained for 1685 and 669 cycles at 1 A g−1 and capacities of 0.5 and 1 Ah g−1, respectively. Density functional theory calculations reveal low energy barriers for both Li2CO3 formation and decomposition reactions during the respective discharge and recharge process, evidencing the high catalytic activity of single Cd sites. This study provides a simple and effective avenue for developing highly active and stable single‐atom non‐precious metal cathode catalysts for advanced Li–CO2 batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3