Therapeutic Nanovaccines Reshape the Metabolic and Immune Microenvironment for Enhancing Immunotherapy of Primary and Lymphatic Metastatic Tumors

Author:

Fu Baixue1,Hu Junwei1,Yu Ao23,Wang Yongjian1ORCID

Affiliation:

1. Key Laboratory of Bioactive Materials Ministry of Education College of Life Sciences Nankai University Tianjin 300071 China

2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

3. Tianjin Key Laboratory of Molecular Recognition and Biosensing College of Chemistry Nankai University Tianjin 300071 China

Abstract

AbstractThe effectiveness of anti‐metastasis therapy is hampered by the highly immunosuppressive microenvironment found in both tumor tissues and lymph nodes. In this work, a therapeutic nanovaccine, CaGlu NPs, is introduced composed of calcium carbonate nanoparticles (CaCO3 NPs) and β‐glucan. Through the synergistic effect of CaCO3 NPs and β‐glucan, CaGlu NPs can induce immunogenic cell death in tumor tissues, repolarize tumor macrophages, reverse the immunosuppressive tumor microenvironment, effectively activate antigen‐specific cytotoxic T lymphocytes, promote dendritic cells maturation, and eventually elicit an effective anti‐tumor immune response in both primary tumors and metastatic lymph nodes. Meanwhile, CaGlu NPs can remodel the metabolic microenvironment in tumors and lymph nodes by decreasing the expression of lactate dehydrogenase A and hypoxia‐inducible factor‐1α, further enhancing the anti‐tumor immune response. CaGlu NPs also inhibit tumor angiogenesis and lymphangiogenesis and induce long‐term immune memory effects. This therapeutic nanovaccine strategy, which simultaneously remodels the metabolic and immunosuppressive microenvironments in tumors and metastatic lymph nodes, showed strong anti‐metastatic effects in vivo. This study presents a promising approach to effectively treat lymph node metastatic tumors using nanomaterial‐assisted immunotherapies and underscores its broad potential for clinical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3