Mechanically Robust, Flexible, Fast Responding Temperature Sensor and High‐Resolution Array with Ionically Conductive Double Cross‐Linked Hydrogel

Author:

Zhang Jing1,Yan Ke1,Huang Jinrong1,Sun Xidi1,Li Jiean1,Cheng Yan1,Sun Yuqiong1,Shi Yi1,Pan Lijia1ORCID

Affiliation:

1. Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering Nanjing University Nanjing 210093 China

Abstract

AbstractHydrogel‐based sensing devices show potential in wearable electronics. However, most hydrogels are mechanically weak, bringing functional stability problems in real usage environment that may interact with occasionally external forces. There are demands to develop robust hydrogel‐based devices with good performances. Here, a highly sensitive temperature sensor with robust, ionic conductive, and double cross‐linked polyacrylamide‐sodium alginate hydrogel is developed. It is found that ions with larger radius show higher sensitivity to temperature changes (e.g., Ba2+) in the hydrogel, because ion movement is dependent with ion sizes. The sensor shows advantages of fast response (2.02 s of 40 °C temperature difference), wide sensing range (22–100 °C), and high robustness (withstanding 2000 cyclic compression and 175 N m−1 for 180° anti‐peeling test). The wearable sensor can effectively distinguish the temperatures of various body parts (0.9 °C temperature difference) and monitor respiration (0.5 °C temperature difference) in real‐time. A wearable 5×5 sensing array is developed for direct human‐body temperature mapping, achieving an optimum resolution of ≈0.15 mm−1 and enabling a clear mapping of superficial vascular pathways at the wrist. This study provides a practical and optimized approach for the implementation of wearable conductive hydrogel‐based devices in the field of human health.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3