High‐performance Photoelectrochemical Hydrogen Production Using Asymmetric Quantum Dots

Author:

Wang Kanghong123,Wang Chao2,Tao Yi1,Tang Zikun1,Benetti Daniele2,Vidal François2,Liu Yu4,Rummeli Mark H.4567,Zhao Haiguang8,Rosei Federico2ORCID,Sun Xuhui1

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China

2. Centre Énergie Matériaux et Télécommunications Institut National de la Recherche Scientifique 1650 Boul. Lionel Boulet, J3×1P7 Varennes Québec Canada

3. Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou Jiangsu 215123 P. R. China

4. Soochow Institute for Energy and Materials Innovation college of Physics Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215000 P. R. China

5. Centre of Polymer and Carbon Materials Polish Academy of Sciences M. Curie‐Sklodowskiej 34 Zabrze 41–819 Poland

6. Institute for Complex Materials IFW Dresden 20 Helmholtz Strasse 01069 Dresden Germany

7. Institute of Environmental Technology VSB‐Technical University of Ostrava 17. Listopadu 15 Ostrava 708 33 Czech Republic

8. State Key Laboratory of Bio‐Fibers and Eco‐Textiles College of Textiles & Clothing College of Physics Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China

Abstract

AbstractSolar‐driven photoelectrochemical (PEC) reactions using colloidal quantum dots (QDs) as photoabsorbers have shown great potential for the production of clean fuels. However, the low H2 evolution rate, consistent with low values of photocurrent density, and their limited operational stability are still the main obstacles. To address these challenges, the heterostructure engineering of asymmetric capsule‐shaped CdSe/CdxZn1‐xSe QDs with broad absorption and efficient charge extraction compared to pure‐shell QDs is reported. By engineering the shell composition from pure ZnSe shells into CdxZn1‐xSe gradient shells, the electron transfer rate increased from 4.0 × 107 s−1 to 32.7 × 107 s−1. Moreover, the capsule‐shaped architecture enables more efficient spatial carrier separation, yielding a saturated current density of average of 25.4 mA cm−2 under AM 1.5 G one sun illumination. This value is the highest ever observed for QDs‐based devices and comparable to the best‐known Si‐based devices, perovskite‐based devices, and metal oxide‐based devices. Furthermore, PEC devices based on heterostructured QDs maintained 96% of the initial current density after 2 h and 82% after 10 h under continuous illumination, respectively. The results represent a breakthrough in hydrogen production using heterostructured asymmetric QDs.

Funder

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Higher Education Discipline Innovation Project

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3