Three Potential Elements of Developing Nerve Guidance Conduit for Peripheral Nerve Regeneration

Author:

Zhang Chaoying1ORCID,Gong Jiaxing1ORCID,Zhang Jingyu1ORCID,Zhu Ziyu1,Qian Ying1,Lu Kejie1,Zhou Siyi1,Gu Tianyi1,Wang Huiming1,He Yong23,Yu Mengfei1ORCID

Affiliation:

1. Stomatology Hospital School of Stomatology Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases Key Laboratory of Oral Biomedical Research of Zhejiang Province Cancer Center of Zhejiang University Hangzhou 310006 China

2. State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310027 China

3. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractAutograft replaced by a nerve guidance conduit (NGC) is challenging in peripheral nerve injury because current NGC is still limited by precise conductivity and excellent biocompatibility in vivo, which influences the peripheral nerve repair even for a long lesion gap repair. Several particular elements have the potential function for nerve conductivity acceleration based on the traditional three factors of neural tissue engineering. The review aims to address three questions: 1) What is the superior factor for nerve conduction in the application? 2) How can a more conductive regenerative scaffold be constructed in vivo? 3) What is the next step in nerve regeneration for NGC? The bibliometrics analysis of NGC‐related references is adopted to acquire that the conductive material, manufacturing technology of neural scaffold, and electrical stimulation (ES) play essential roles in the acceleration of nerve conduction. This review visually analyses the research status and summarizes the main types of conductive materials, the manufacturing technologies of neural scaffolds, and the characteristics of ES. The viewpoints and outlook of developing NGC are also discussed in this review. The proposed three elements are expected to improve the nerve conduction of NGC in vivo and even address the dilemma of long‐distance peripheral nerve injury.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3