High‐Stretchable Solid–Solid Phase Change Aerogel Surface‐Modified with Ni‐MOF for Efficient Photothermal Energy Conversion‐Storage and Thermal‐Induced Shape Programming

Author:

Qi Shengyang1,Tian Xingyu1,Yuan Weizhong1ORCID

Affiliation:

1. School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

Abstract

AbstractPhase change materials (PCMs) hold significant potential for thermal energy storage, yet their application is often hindered by leakage and structural instability. Therefore, a high molecular weight polyethylene glycol (HPEG)‐based solid–solid phase change aerogel (SSPCA) is fabricated, exhibiting high stretchability and outstanding energy storage efficiency. More importantly, the solid–solid phase change process completely avoids leakage. After surface‐modification with Ni3(2, 3, 6, 7, 10, 11‐hexaiminotriphenylene)2 (Ni‐HITP) metal‐organic framework (MOF), the obtained nanofunctionalized SSPCA (HPA/Ni‐HITP aerogel) is endowed with efficient photothermal conversion capability. HPA/Ni‐HITP aerogel exhibits high encapsulation efficiency (Een, 98.6%), phase change enthalpy (123.48 J g−1), low thermal conductivity (0.062 W m−1 K−1) and excellent mechanical property (elongation of 535%), thermal stability and reliability with outstanding shape‐stability, and infrared light‐thermal conversion and storage efficiency of 90.15%. Moreover, HPA/Ni‐HITP aerogel presents distinctive thermal‐induced shape memory and reconfigurability, enabling programmable transformations via thermal stimuli. These attractive features make HPA/Ni‐HITP aerogel a potential material for flexible wearable thermal management, energy conversion storage, and shape programming applications, which provides a promising method for fabricating multifunctional solid–solid phase change aerogel without leakage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3