Nano‐Enabled Intracellular Bursting of Calcium and Retinoic Acid Regulates Dopaminergic Neuronal Differentiation of NSCs for Parkinson's Disease Therapy

Author:

Zhang Shuo1,Liu Qi1,Zhou Wenjuan2,Zhao Tiantian2,Shi Jiapei1,Ren Na1,Wang Jingang3,Shan Fengjuan3,Wang Hongli3,Wang Jie1,Sun Chunhui1,Wang Zenan4,Hao Aijun2,Liu Hong15ORCID,Wang Shuping1

Affiliation:

1. Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China

2. Key Laboratory for Experimental Teratology of Ministry of Education Shandong Key Laboratory of Mental Disorders School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China

3. Ji'nan Pantheum Biological Technology Limited Company Jinan 250100 P. R. China

4. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 51800 P. R. China

5. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China

Abstract

AbstractParkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by dopaminergic neuron degeneration. Neural stem cell (NSC) therapy offers promise for replacing these neurons and restoring neural function. However, directing NSCs to become dopaminergic neurons is challenging. Retinoic acid (RA) is a potential regulator, but its insolubility in water limits its use in PD therapy. Herein, nanonizing RA with calcium acetate to create calcium‐retinoic acid nanoparticles (Ca‐RA NPs) is proposed. These nanoparticles can be internalized by NSCs and then dissociated in the acidic environment of lysosomes to lead to a burst of Ca2+ and RA. In vitro results showed that the intracellular bursting of Ca2+ and RA accelerated neuronal differentiation and maturation by 5–10 days compared to spontaneous NSC differentiation. Importantly, Ca‐RA NPs uniquely directed NSCs to dopaminergic neurons, involving the interaction between the calcium ion‐mediated MAPK signaling pathway and the RA‐mediated RA signaling pathway. Animal experiments further validated the efficacy of Ca‐RA‐coated NSCs in restoring motor and cognitive functions in PD mice by rapidly forming dopaminergic neural circuits. Given that both RA and calcium acetate are approved by the FDA, this strategy has the potential for translation into a clinical treatment approach for stem cell therapy of PD.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3