Affiliation:
1. Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
Abstract
AbstractThe excited‐state tuning of luminescent metal–organic compounds has made great progress in the fields of optical imaging, photocatalysis, photodynamic therapy, light‐emitting devices, sensors, and so on. Although metal–organic compounds with high luminescence efficiency can be realized via enhanced molecular rigidity and heavy‐atom effect, their corresponding luminescence lifetimes are still limited on the order of a nanosecond to a millisecond, owing to the inherent competition between luminous efficiency and lifetime. Therefore, the advanced applications (i.e., persistent afterglow imaging, information security, anti‐counterfeiting, and smart materials, among others) related with long persistent luminescence (LPL, typically with the excited‐state lifetime larger than millisecond) are seriously hindered. This review gives a timely and systematic summary of metal–organic compounds for realizing room‐temperature phosphorescence (RTP)‐type and thermally activated delayed fluorescence (TADF)‐type LPL during last few years. Particularly, based on the perspectives of time, space, and energy dimensions, fundamental materials design and coordination assembly are systematically described for the first time. Moreover, the internal and external factors of influencing the LPL properties in terms of luminescence efficiency, lifetime, and color are illustrated. Last but not least, perspectives and challenges are also discussed for developing LPL from metal–organic compounds.
Funder
Beijing Municipal Natural Science Foundation
National Natural Science Foundation of China
Fok Ying Tong Education Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献