Suppressing the vdW Gap‐Induced Tunneling Barrier by Constructing Interfacial Covalent Bonds in 2D Metal–Semiconductor Contacts

Author:

Shan Wenchao1,Shi Anqi1,Xin Zhengyang1,Zhang Xiuyun2,Wang Bing3,Li Yongtao1,Niu Xianghong1ORCID

Affiliation:

1. School of Science State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering Nanjing University of Posts & Telecommunications Nanjing 210023 China

2. College of Physics Science and Technology Yangzhou University Yangzhou 225002 China

3. Institute for Computational Materials Science Joint Center for Theoretical Physics (JCTP) School of Physics and Electronics Henan University Kaifeng 475004 China

Abstract

Abstract2D metal and semiconductor materials provide a promising solution to realize Ohmic contacts by suppressing the strong Fermi level pinning (FLP) effect due to without dangling bonds. However, the 2D metal‐semiconductor Van der Waals (vdW) interfaces induce an inevitable tunnel barrier, significantly restraining the injection of charge carriers into the conduction channel. Herein, by replacing the vdW bond with the covalent bond in interfaces, the Ohmic and tunneling‐barrier‐inhibition contacts are realized simultaneously based on the 2D XSi2N4 (X = Cr, Hf, Mo, Ti, V, Zr) semiconductor and the 2D Mxene metal family. Taking 60 2D Mxene‐XSi2N4 contacts as examples, although the vdW‐type contacts exhibit Ohmic contacts, the tunneling probability (PTB) can be as low as 0.4%, while the PTB can increase to 88.09% by removing the Mxene terminations at the adjacent interface to form the covalent bond. The weak FLP and Ohmic contacts are retained at covalent bond interfaces since the outlying Si─N sublayer protects the band‐edge electronic states of XSi2N4 semiconductors. This work provides a straightforward strategy for advancing high‐performance and energy‐efficient 2D electronic nanodevices.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3