Heterogeneous Integration of Graphene and HfO2 Memristors

Author:

Trstenjak Urška12ORCID,Goß Kalle13ORCID,Gutsche Alexander13ORCID,Jo Janghyun4ORCID,Wohlgemuth Marcus13,Dunin‐Borkowski Rafal E.4,Gunkel Felix13ORCID,Dittmann Regina13

Affiliation:

1. Peter Grünberg Institute 7 Forschungszentrum Jülich GmbH 52428 Jülich Germany

2. Advanced Materials Department Jožef Stefan Institute Ljubljana 1000 Slovenia

3. Jülich‐Aachen Research Alliance (JARA‐FIT) 52428 Jülich Germany

4. Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons Forschungszentrum Jülich GmbH 52428 Jülich Germany

Abstract

AbstractThe past decade has seen a growing trend toward utilizing (quasi) van der Waals growth for the heterogeneous integration of various materials for advanced electronics. In this work, pulsed‐laser deposition is used to grow HfO2 thin films on graphene/SiO2/Si. As graphene is easily damaged under standard oxide‐film deposition conditions, the process needs to be adjusted to minimize the oxidation and the collision‐induced damage. A systematic study is conducted in order to identify the crucial deposition parameters for diminishing the defect concentration in the graphene interlayer. For evaluating the quality of graphene, it is mainly relied on data obtained from Raman spectroscopy, using approaches beyond the Tuinstra‐Koenig relation. The results show that the defects are mainly a consequence of the high kinetic energy of the plasma‐plume particles. Using a relatively high Ar process pressure, a sufficiently low defect concentration is ensured, without compromising the quality of the HfO2 thin film. This enabled us to successfully prepare memristive devices with a filamentary type of switching, utilizing the graphene layer as a bottom electrode. The findings of this study can be easily transferred to other systems for the development of oxide electronic devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3