Refining Asymmetric Low‐Coordinated Fe‐N3 Motif to Boost Catalytic Ozonation Activity

Author:

Qu Wei1,Tang Su1,Tang Zhuoyun1,Zhong Tao1,Zhao Huinan1,Tian Shuanghong1,Shu Dong2,He Chun1ORCID

Affiliation:

1. School of Environmental Science and Engineering Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐sen University Guangzhou 510275 China

2. School of Chemistry South China Normal University Guangzhou 510006 China

Abstract

AbstractIn the quest to boost the intrinsic activity of single‐atom catalysts (SACs), optimizing the electronic properties of metal centers and maximizing active sites play a pivotal role. Here, a facile surface molten salt‐assisted approach for fabricating porous iron‐nitrogen‐carbon catalysts enriched with catalytically accessible single‐atom motifs is reported. Multiple characterization analyses prove that abundant intrinsic defects are generated at the edge sites, resulting in the formation of thermally stable unstitched Fe‐N3 motif. Theoretical investigations unveil that the transition from Fe‐N4 to Fe‐N3 induces structural alteration, resulting in the convergence of Fe‐3d orbital energy to Fermi energy. The low‐coordinated Fe‐N3 motif exhibits higher activation ability, reinforcing its interaction with O3 and weakening the O‐O bond. This leads to a reduction in the reactivity of surface atomic oxygen barriers (O3‐to‐*O/*OO), ultimately achieving efficient catalytic oxidation of methyl mercaptan and its intermediates, achieving performance 20‐fold higher than intact Fe‐N4 catalysts and 625‐fold higher than commercial MnO2. These findings present a comprehensive approach for synthesizing SACs with fully accessible active sites and boosted electronic configurations to advance catalytic ozonation activity.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3