Self‐Promoted Targeting Delivery of Nanodrug Through Chemotherapeutic Upregulation of CD47 for Triple Negative Breast Cancer Therapy

Author:

Liu Qianqian1,Chen Xiayun2,Jiang Yong1,Yan Mengyi2,Yu Baixue2,Zhang Wei2,Cen Yi2,Zhang Junyan3,Zhang Jian1,Lei Qi13,Li Shiying2,Yang Bin1ORCID

Affiliation:

1. The Second Affiliated Hospital of Guangzhou Medical University School of Biomedical Engineering Guangzhou Medical University Guangzhou 511436 P. R. China

2. Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 P. R. China

3. The Second Affiliated Hospital State Key Laboratory of Respiratory Disease Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology Guangzhou Medical University Guangzhou 510260 P. R. China

Abstract

AbstractThe high heterogeneity of receptor expression and varied chemotherapeutic sensitivity seriously compromise the therapeutic outcome of triple‐negative breast cancer (TNBC)‐targeting nanodrugs. In this work, a TNBC‐targeting nanodrug (designated as CPU) equipped with self‐promoted targeting property through chemotherapeutic upregulation of CD47 is constructed, enabling synergistic chemo/photodynamic therapy. Specifically, the hydrophobic docetaxel (DOC), which can upregulate the expression of CD47 in TNBC cells, is loaded in the nanomicelles (designated as P‐Pep) assembled from a protoporphyrin IX (PPIX)‐labeled amphiphilic chimeric peptide of Fmoc‐K(PPIX)‐AWSATWSNYWRH, obtaining the ca. 196 nm CPU. Aided by the enhanced permeability and retention effect and guidance of CD47‐binding peptide sequence, CPU is verified to prefer to accumulate in CD47 overexpressed TNBC cells, which can recruit more CPU by upregulating CD47 expression post‐treatment of DOC. Both in vitro and in vivo results demonstrate the superior tumor targeting ability, which can extensively amplify chemotherapeutic and photodynamic therapeutic effects while evading obvious adverse effects. The self‐promoted targeting strategy will inspire the design of nanodrugs for the personalized therapy of tumors with high heterogeneity and resistance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3