High‐Performance Microfluidic Techniques toward Nanostructuration of BODIPY and BOPHY Based CPPs Hybrid Photocatalyst for Hydrogen Production

Author:

Palenzuela‐Rebella Sandra1ORCID,Naranjo Teresa1ORCID,Gomez‐Mendoza Miguel1ORCID,Barawi Mariam1ORCID,Liras Marta1,de la Peña O´Shea Víctor A.1ORCID

Affiliation:

1. IMDEA Energy Institute Av/ Ramón de la Sagra, 3 Móstoles Madrid E‐28935 Spain

Abstract

AbstractHere, the use of high‐performance microfluidic techniques (HPMT) is reportedto afford conjugated porous polymer (CPPs) with smaller particle size and narrower particle size dispersion than the obtained by miniemulsion methodology. Specifically, polymers based on BODIPY or BOPHY dyes are synthesized by HPMT conditions and conventional miniemulsion conditions. The polymer textural properties from HPMT are notably improved, giving rise to high‐quality thin films that are photoelectrochemically characterized. Furthermore, hybrid materials of CPPs synthesized by HPMT and TiO2 inorganic semiconductor revealed enhanced photocatalytic activity in the hydrogen evolution reaction (HER). The most active hybrid UN_IEP‐7@T‐10 photocatalyst, containing 10 wt% polymer loading, achieved a hydrogen evolution rate of 3.10 mmol g−1 h−1 (ƺ = 1.13%), which is threefold higher than that of its non‐nanostructured from bulk synthesis, two‐times greater than its nanostructured by conventional miniemulsion techniques and even surpassed by 39‐times the performance of bare TiO2. It is noteworthy that both photoluminescence lifetime (τPL) and transient lifetime (τT) are not affected by the nanoestructuration of CPPs, which agrees with the preservation of the chemical structure by both synthetic methodologies. The employment of HPMT as nanostructuration strategy clearly supports the obtaining of more processable polymers for a wide range of energy applications.

Funder

Comunidad de Madrid

Spanish National Plan for Scientific and Technical Research and Innovation

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3