Rational Design of Covalent Multiheme Cytochrome‐Carbon Dot Biohybrids for Photoinduced Electron Transfer

Author:

Zhang Huijie1ORCID,Casadevall Carla2ORCID,van Wonderen Jessica H.3ORCID,Su Lin2ORCID,Butt Julea N.3ORCID,Reisner Erwin2,Jeuken Lars J. C.1ORCID

Affiliation:

1. Leiden Institute of Chemistry Leiden University PO Box 9502 Leiden 2300 RA The Netherlands

2. Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK

3. School of Chemistry and School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK

Abstract

AbstractBiohybrid systems can combine inorganic light‐harvesting materials and whole‐cell biocatalysts to utilize solar energy for the production of chemicals and fuels. Whole‐cell biocatalysts have an intrinsic self‐repair ability and are able to produce a wide variety of multicarbon chemicals in a sustainable way with metabolic engineering. Current whole‐cell biohybrid systems have a yet undefined electron transfer pathway between the light‐absorber and metabolic enzymes, limiting rational design. To enable engineering of efficient electron transfer pathways, covalent biohybrids consisting of graphitic nitrogen doped carbon dots (g‐N‐CDs) and the outer‐membrane decaheme protein, MtrC from Shewanella oneidensis MR‐1 are developed. MtrC is a subunit of the MtrCAB protein complex, which provides a direct conduit for bidirectional electron exchange across the bacterial outer membrane. The g‐N‐CDs are functionalized with a maleimide moiety by either carbodiimide chemistry or acyl chloride activation and coupled to a surface‐exposed cysteine of a Y657C MtrC mutant. MtrC∼g‐N‐CD biohybrids are characterized by native and denaturing gel electrophoresis, chromatography, microscopy, and fluorescence lifetime spectroscopy. In the presence of a sacrificial electron donor, visible light irradiation of the MtrC∼g‐N‐CD biohybrids results in reduced MtrC. The biohybrids may find application in photoinduced transmembrane electron transfer in S. oneidensis MR‐1 for chemical synthesis in the future.

Funder

European Commission

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3