Giant Critical Thickness in Highly Conducting Epitaxial SrMoO3 Electrodes Investigated by Lift‐Off Membranes

Author:

Ruan Yating1ORCID,Schreyer Philipp1ORCID,Jiang Tianshu1ORCID,Liang Fei1ORCID,Arzumanov Alexey1ORCID,Dürrschnabel Michael2,Molina‐Luna Leopoldo1ORCID,Komissinskiy Philipp1ORCID,Alff Lambert1ORCID

Affiliation:

1. Institute of Materials Science Technische Universität Darmstadt Peter‐Grünberg‐Straße 2 64287 Darmstadt Germany

2. Institute for Applied Materials ‐ Applied Materials Physics Karlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

Abstract

AbstractWithin the huge perovskite materials family, thin films of highly conducting materials such as SrMoO3, SrNbO3, and SrVO3 are candidates for low‐loss bottom electrodes in epitaxial all‐oxide devices, in particular for high‐frequency applications. Recently, the fully coherent growth of more than 5 µm thick SrMoO3 electrodes in a varactor device prototype epitaxial heterostructure has been reported. This result raises the question of the strain mechanism in such anomalously thick coherent epitaxial layers. Here, this question is addressed by comparing the lattice constants of coherently strained layers and their free‐standing membranes. SrMoO3 is mainly elastically strained within the heterostructure and fully relaxed after removal of the substrate. These results indicate a giant critical thickness, making highly conducting perovskites even more outstanding materials for high‐frequency applications that require electrode thicknesses beyond the skin depth. The described technology of lifting off thick SrMoO3 membranes joins the emerging field of freestanding oxide layer technology, opening unexplored avenues for single crystal investigations, novel perovskite nanostructures, and wafer transfer of functional oxides, walking in the footsteps of recent developments in van der Waals epitaxial heterostructures.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3