Hierarchically Porous Cellulose Membrane via Self‐Assembly Engineering for Ultra High‐Power Thermoelectrical Generation in Natural Convection

Author:

Sun Haodong12,Tang Fengjie1,Bi Yinghao1,Sun Hao2,Huang Liulian1,Jiang Feng2,Chen Lihui1ORCID,Li Jianguo1

Affiliation:

1. College of Material Engineering National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fujian Agriculture and Forestry University Fuzhou 350002 P. R. China

2. Department Sustainable Functional Biomaterials Lab of Wood Science The University of British Columbia Vancouver BC V6T 1Z4 Canada

Abstract

AbstractRenewable heat‐to‐power conversion based on thermoelectric strategy holds strong prospect toward clean electricity generation in low‐carbon society, in which its conversion performance is mainly decided by the temperature gradient. However, achieving a high temperature gradient spontaneously throughout the day in natural convection remains a significant challenge. Herein, cost‐effective, sustainable, and hierarchically porous cellulose membrane (HPCM) created through a simple self‐assembly engineering of cellulose molecules is proposed. Such HPCM boasts a unique structure of layered micro‐ and nanoscaled pores with ≈95% porosity, and correspondingly demonstrates >94% solar reflectance and >0.9 mid‐infrared emissivity. As a result, HPCM enables average temperature gradient of 14.5 °C and 76 mV output voltage of thermoelectric module during daytime natural convection, which are 17‐ and 30‐time higher than those of pristine device, respectively. Note that HPCM‐based thermoelectric module consistently generates an average output voltage of 44.2 mV all day. Such modules are seamlessly integrated into thermoelectric arrays to achieve high output voltage of ≈1.5 V and power density of ≈3 W m−2 over 90‐d period. The prepared HPCM marks a significant advancement in environmentally friendly, scalable, and viable thermoelectric conversion to power the low‐carbon society.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University

Fujian Agriculture and Forestry University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3