Affiliation:
1. Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
2. Department of Traditional Chinese Medicine Zhongnan Hospital Wuhan University Wuhan 430071 P. R. China
Abstract
AbstractParaptosis is a non‐apoptotic and caspase‐independent programmed cell death that can trigger immunogenic cell death (ICD) in tumor cells, representing a potent tactic to overcome immune tolerance to apoptosis. Here, this study demonstrates the construction of a dual‐responsive nanoreactor (MCGDH) to achieve paraptosis‐mediated ICD for chemo‐immunotherapy. Specifically, by doping Cu2+ into glutathione (GSH)‐responsive dendritic mesoporous silica nanoparticles, the platform (CGDMSN) is endowed with partial acid‐sensitivity. After loaded with 8‐hydroxyquinoline (8‐HQ), cell membrane fragments are coated onto the ammoniated CGDMSN surface to construct MCGDH. Upon internalization by tumor cells, the release of Cu2+ and 8‐HQ from MCGDH in response to the acidic pH and high concentration of GSH in the tumor microenvironment stimulates in situ generation of Cu(8‐HQ)2, inducing tumor cells paraptosis at a low copper dose. Moreover, MCGDH‐mediated paraptosis amplifies the immunogenicity of tumor cells, facilitating antigen presentation to dendritic cells and activating CD8+/CD4+ T cells immune responses. Furthermore, the combination of MCGDH and anti‐PD‐1 antibodies (αPD‐1) promotes the systemic anti‐tumor immune responses and long‐term immunological effect to vastly inhibit the primary/distant tumor growth and prevent tumor metastasis. This GSH/pH dual‐responsive nanoreactor serves as a selective platform for accelerating the development of chemo‐immunotherapy.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献