Emerging Nanoporous Materials for Biomolecule Separation

Author:

Song Yongyang12ORCID,Bao Han13,Shen Xinyi13,Li Xiuling2ORCID,Liang Xinmiao2,Wang Shutao13ORCID

Affiliation:

1. CAS Key Laboratory of Bio‐inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China

3. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractBiomolecule separation plays a vital role in downstream applications ranging from omics research, structure analysis, and drug purification to clinical diagnosis. Among all existing materials and technologies towards biomolecule separation, nanoporous materials take the leading place. To achieve efficient biomolecule separation, the interface of nanoporous materials is always modified with a monolayer containing specific functional groups. However, the monolayer modification strategy still encounters bottlenecks due to extremely low abundance of target biomolecules, strong interference from high‐abundance background biomolecules, similar characteristics of compounds, unspecific adsorption, et al. Recently, several emerging nanoporous materials, which are prepared without the monolayer modification process, have been reported for high‐efficient, high‐specific, and rapid biomolecule separation. In this review, the authors summarize the emerging nanoporous materials for biomolecule separation, mainly focusing on the design principle and separation performance that are different from classical nanoporous materials. First, the classic design strategy of monolayer modification is discussed and the recent progress with this aspect is introduced. Then, emerging nanoporous materials beyond monolayer modification are introduced. At last, future developments, challenges, and great promise of biomolecule separation nanoporous materials are discussed.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3