Collective Surface Enabling an Ultralong Life of LiCoO2 at High Voltage and Elevated Temperature

Author:

Zhang Wen1,Cheng Fangyuan1,Wang Meng2,Xu Jia1,Li Yuyu3,Sun Shixiong1,Xu Yue1,Wang Liang2,Xu Leimin2,Li Qing1,Fang Chun1,Lu Yuhao2,Han Jiantao1ORCID

Affiliation:

1. State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. Ningde Amperex Technology Limited Key laboratory of consumer lithium‐ion battery in Fujian Fujian 352100 China

3. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education Jianghan University Wuhan Hubei 430056 China

Abstract

AbstractRapidly increasing demand for energy density in consumer electronics is eager for developing high‐voltage LiCoO2 (LCO). However, some great challenges such as severe phase transition and surface instability negate the cycle life of LCO operated at high‐voltages (≥4.6 V). Herein, a chemical reconstruction strategy is proposed to form a collective surface of LCO through an interdiffusion reaction of MgHPO4·3H2O (MP) so as to extend the cycle life of high‐voltage LCO. The collective surface renders a three‐layer configuration that demonstrates an amorphous Li3PO4 outmost layer, a spinel‐like layer beneath, and a Mg diffusion layer within LCO bulk. MP with relatively low hardness enables the uniform precoating via mechanical mixing, followed by a sintering process to undergo an interdiffusion reaction. Li3PO4 is an intrinsic electrochemical stabilizer against interfacial side reactions. The spinel‐like compounds build a high‐voltage‐stable surface against irreversible O2 release. In addition, Mg diffuses into the bulk lattice to suppress irreversible phase transition during the deep delithiation of LCO. Therefore, such modified LCO with a collective surface exhibits ultralong life with capacity retention of 82% after 1000 cycles at 1 C within 3.0–4.6 V and stable operating at 4.7 V or elevated temperature (45 °C).

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3