Integrating Aggregation Induced Emission and Twisted Intramolecular Charge Transfer via Molecular Engineering

Author:

Zhang Wei1ORCID,Kong Jie1ORCID,Miao Rong2,Song Hongwei3ORCID,Ma Yalei2,Zhou Meng1ORCID,Fang Yu2ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Anhui 230026 P. R. China

2. Laboratory of Applied Surface and Colloids Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China

3. Department of Chemistry−Angstrom Laboratory Uppsala University Box 523 Uppsala 75120 Sweden

Abstract

AbstractThe pursuit of sensitive fluorescent chromophores with integrated aggregation‐induced emission (AIE) and twisted intramolecular charge transfer (TICT) properties are attractive due to the tunable emission properties and increased intensity. However, this type of chromophore has yet to be exemplified mechanistically. In this study, a strategy is presented for manipulating the formation of TICT and the AIE effect through molecular engineering. The feasibility of TICT properties is validated by theoretical calculations and ultrafast spectroscopies. By precisely adjusting the hydrophobicity of the donor group, the fluorescence is significantly enhanced through the addition of poor solvent. These findings not only provide mechanistic elucidation for chromophores exhibiting integrated TICT and AIE properties in various environmental conditions but also underscore the critical factors for the systematic design of chromophores with high tunability and strong emissions.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3