Layering Charged Polymers Enable Highly Integrated High‐Capacity Battery Anodes

Author:

Han Dong‐Yeob1,Han Im Kyung2,Son Hye Bin1,Kim Youn Soo2,Ryu Jaegeon3,Park Soojin1ORCID

Affiliation:

1. Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

2. Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Sogang University Seoul 04107 Republic of Korea

Abstract

AbstractHigh‐capacity anode materials are promising candidates for increasing the energy density of lithium (Li)‐ion batteries due to their high theoretical capacities. However, a rapid capacity fading due to the huge volume changes during charge‐discharge cycles limits practical applications. Herein, a layering‐charged polymeric binder is introduced that can effectively integrate high‐capacity anodes using a strong yet reversible Coulomb interaction and enriched hydrogen bonding. The charged polymeric binder builds a dynamically charge‐directed network on the active materials with high versatility and efficiently dissipates the electrode stress with its excellent mechanical properties. In addition, poly(ethylene glycol) (PEG) moieties of the charged binder offer a fast Li‐ion conduction pathway that can form an ultra‐thick silicon oxide (SiOx)‐based electrode (≈10.2 mAh cm−2) without compromising the reversible specific capacity and promote effective charge interaction as a mechanical modulator. Such an unprecedented charge‐directed binder provides insights into the rational design of a binder for high‐capacity anodes.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3