Endowing Carbon Dots with Long‐Lived Phosphorescence Emission in Aqueous Solutions

Author:

Li Taotao1,Zhao Yihan12,Zhang Nan12,Zhang Kui3,Zhang Cheng3,Yi Ting‐Feng12ORCID

Affiliation:

1. School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China

2. Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials Northeastern University at Qinhuangdao Qinhuangdao 066004 P. R. China

3. School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan 243032 P. R. China

Abstract

AbstractRoom temperature phosphorescent carbon dots (RTP CDs) have received increasing attention in recent years due to their outstanding optical properties and potential applications. It is worth noting that RTP CDs in aqueous solution have inspired special interests because of their low toxicity, long lifetime, and ability to avoid autofluorescence and background fluorescence, exhibiting wide application prospects in time‐resolved biological imaging and sensing. However, achieving phosphorescent CDs in aqueous solutions remains a considerable challenge because water molecules and oxygen can cause the deactivation of triplet‐state excitons, resulting in phosphorescence quenching. Several strategies have been proposed to counter the problem including encapsulated CDs in a rigid matrix, hydrogen bonding, and covalent bonding fixation. Consequently, a more significant number of RTP CDs materials with excellent optical stability, long lifetime, and multicolor are successfully obtained. Herein, the recent development of RTP CDs materials in aqueous solution as well as the corresponding fabricated strategies and luminescence mechanism is detailly summarized and reviewed. Furthermore, various applications of water‐phase RTP CDs materials in information security, sensing, bioimaging, light‐emitting diodes, and fingerprinting are also discussed. Finally, an outlook on the development of CDs materials and applications is proposed.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Scientific Research Foundation of Education Department of Anhui Province of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3