Functional Graphdiyne for Emerging Applications: Recent Advances and Future Challenges

Author:

Wang Mengke1,Pu Junmei1,Hu Yi1,Zi You1,Wu Zheng‐Guang1,Huang Weichun1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China

Abstract

AbstractGraphdiyne (GDY) is regarded as an exceptional candidate to meet the growing demand in many fields due to its rich chemical bonds, highly π‐conjugated structure, uniformly distributed pores, large surface area, and high inhomogeneity of charge distribution. The extensive research efforts bring about a rapid expansion of GDY with a variety of functionalities, which significantly enhance performance including photocatalysis, energy, biomedicine, etc. In this review, the synthetic strategies (in situ and ex situ approaches) that are designed to rationally functionalize GDY, including optimizing their nanostructures by surface/interface engineering with dopants or functional groups (heteroatoms/small molecules/macromolecules), and building up hierarchical GDY‐based heterostructures are highlighted. Theoretical calculations on the structural evolution and electronic characteristics after the functionalization of GDY are briefly discussed. With elaborate functionalization and rational structure engineering, functional GDY applied in a variety of emerging applications (e.g., hydrogen evolution reaction, CO2 reduction reaction, nitrogen reduction reaction, energy storage and conversion, nanophotonics, sensors, biomedical applications, etc.) are comprehensively discussed. Finally, challenges and prospects concerning the future development of GDY‐based nanoarchitectures are also presented.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3