Rational Design of Bio‐Inspired Peptide Electronic Materials toward Bionanotechnology: Strategies and Applications

Author:

Zhao Jingwen1,Liu Qingxi1,Tong Xiaoyu1,Wang Yuehui1,Cai Kaiyong1,Ji Wei1ORCID

Affiliation:

1. Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractBiologically inspired peptide‐based materials, as novel charge transport materials, have gained increasing interest in bioelectronics due to their remarkable electrical properties and inherent biocompatibility. Extensive studies have shown that peptides can self‐assemble into a variety of hierarchical nanostructures with unique physical properties through supramolecular interactions. Therefore, peptide‐based materials hold great promise for applications in emerging electronic fields such as sensing, energy harvesting, energy storage, and electronic transmission. Herein, this work proposes a review article to summarize the rational design and research progress of peptide‐based materials and devices in bioelectronics. This work first introduces the design strategies and assembly mechanism for constructing high‐performance peptide‐based electronic materials and devices. In the following part, the applications of peptide‐based electronic materials and devices are systematically classified and discussed, including sensors, piezoelectric nanogenerators, electrodes, and semiconductors. Finally, the remaining challenges and future perspectives of peptide‐based bioelectronic materials and devices are presented. This work believes that this review will provide inspiration and guidance for the design and development of innovative peptide‐based smart materials in the field of bioelectronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3