Enhancing the electrochemical performance of semicoke‐based hard carbon anode through oxidation‐crosslinking strategy for low‐cost sodium‐ion batteries

Author:

Ma Huizhen1,Tang Yakun1,Tang Bin2,Zhang Yue1,Deng Limin1,Liu Lang1,Dong Sen1,Cao Yuliang13ORCID

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry Xinjiang University Urumqi Xinjiang China

2. School of Chemical Engineering, Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2) Zhengzhou University Zhengzhou Henan China

3. Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei China

Abstract

AbstractSemicoke, a coal pyrolysis product, is a cost‐effective and high‐yield precursor for hard carbon used as anode in sodium‐ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high‐temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation‐crosslinking strategy to realize fusion‐to‐solid‐state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali‐oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross‐linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant ‐C‐(O)–O‐ groups (up to 21 at% oxygen content). The ‐C‐(O)–O‐ groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke‐based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g−1, with low‐voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X‐ray diffraction analysis, the plateau capacity of semicoke‐based hard carbon is mainly derived from interlayer intercalation of Na+ ion. The proposed oxidation‐crosslinking strategy can contribute to the usage of low‐cost and high‐performance hard carbons in advanced SIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3