Low‐dose exercise protects the heart against established myocardial infarction via IGF‐1‐upregulated CTRP9 in male mice

Author:

Tan Yanzhen1,Feng Pan1,Feng Lele1,Shi Lei1ORCID,Song Yujie1,Yang Jian1,Duan Weixun1,Gao Erhe2,Liu Jincheng1,Yi Dinghua1,Zhang Bing1,Sun Yang3,Yi Wei1

Affiliation:

1. Department of Cardiovascular Surgery Xijing Hospital, Fourth Military Medical University Xi'an Shaanxi China

2. Center for Translational Medicine Lewis Katz School of Medicine at Temple University Philadelphia Pennsylvania USA

3. Department of General Medicine Xijing Hospital, Fourth Military Medical University Xi'an Shaanxi China

Abstract

AbstractRegular exercise is recommended as an important component of therapy for cardiovascular diseases in clinical practice. However, there are still major challenges in prescribing an optimized exercise regimen to individual patients with established cardiac disease. Here, we tested the effects of different exercise doses on cardiac function in mice with established myocardial infarction (MI). Exercise was introduced to mice with MI after 4 weeks of surgery. Low‐dose exercise (15 min/day for 8 weeks) improved mortality and cardiac function by increasing 44.39% of ejection fractions while inhibiting fibrosis by decreasing 37.74% of distant region. Unlike higher doses of exercise, low‐dose exercise consecutively upregulated cardiac expression of C1q complement/tumor necrosis factor‐associated protein 9 (CTRP9) during exercise (>1.5‐fold). Cardiac‐specific knockdown of CTRP9 abolished the protective effects of low‐dose exercise against established MI, while cardiac‐specific overexpression of CTRP9 protected the heart against established MI. Mechanistically, low‐dose exercise upregulated the transcription factor nuclear receptor subfamily 2 group F member 2 by increasing circulating insulin‐like growth factor 1 (IGF‐1), therefore, upregulating cardiac CTRP9 expression. These results suggest that low‐dose exercise protects the heart against established MI via IGF‐1‐upregulated CTRP9 and may contribute to the development of optimized exercise prescriptions for patients with MI.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3