BSLPSDN: Base station location privacy via software‐defined networking (SDN) in wireless sensor networks

Author:

Abbas Bangash Yawar1ORCID,Iqbal Waseem1ORCID,Rubab Saddaf2,Waheed Khan Abdul3,Aman Waqas4ORCID

Affiliation:

1. National University of Sciences and Technology Islamabad Pakistan

2. Department of Computer Engineering, College of Computing and Informatics University of Sharjah Sharjah United Arab Emirates

3. Department of IT and Computer Science Pak‐Austria Fachhochschule Haripur Pakistan

4. Department of Information Systems Sultan Qaboos University Muscat Oman

Abstract

SummaryBase station's location privacy in a wireless sensor network (WSN) is critical for information security and operational availability of the network. A key part of securing the base station from potential compromise is to secure the information about its physical location. This paper proposes a technique called base station location privacy via software‐defined networking (SDN) in wireless sensor networks (BSLPSDN). The inspiration comes from the architecture of SDN, where the control plane is separated from the data plane, and where control plane decides the policy for the data plane. BSLPSDN uses three categories of nodes, namely, a main controller to instruct the overall operations, a dedicated node to buffer and forward data, and lastly, a common node to sense and forward the packet. We employ three kinds of nodes to collaborate and achieve stealth for the base station and thus protecting it against the traffic‐analysis attacks. Different traits of the WSN including energy status and traffic density can actively be monitored by BSLPSDN, which positively affects the energy goals, expected life of the network, load on common nodes, and the possibility of creating diversion in the wake of an attack on the base station. We incorporated multiple experiments to analyze and evaluate the performance of our proposed algorithm. We use single controller with multiple sensor nodes and multiple controllers with multiple sensor nodes to show the level of anonymity of BS. Experiments show that providing BS anonymity via multiple controllers is the best method both in terms of energy and privacy.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3